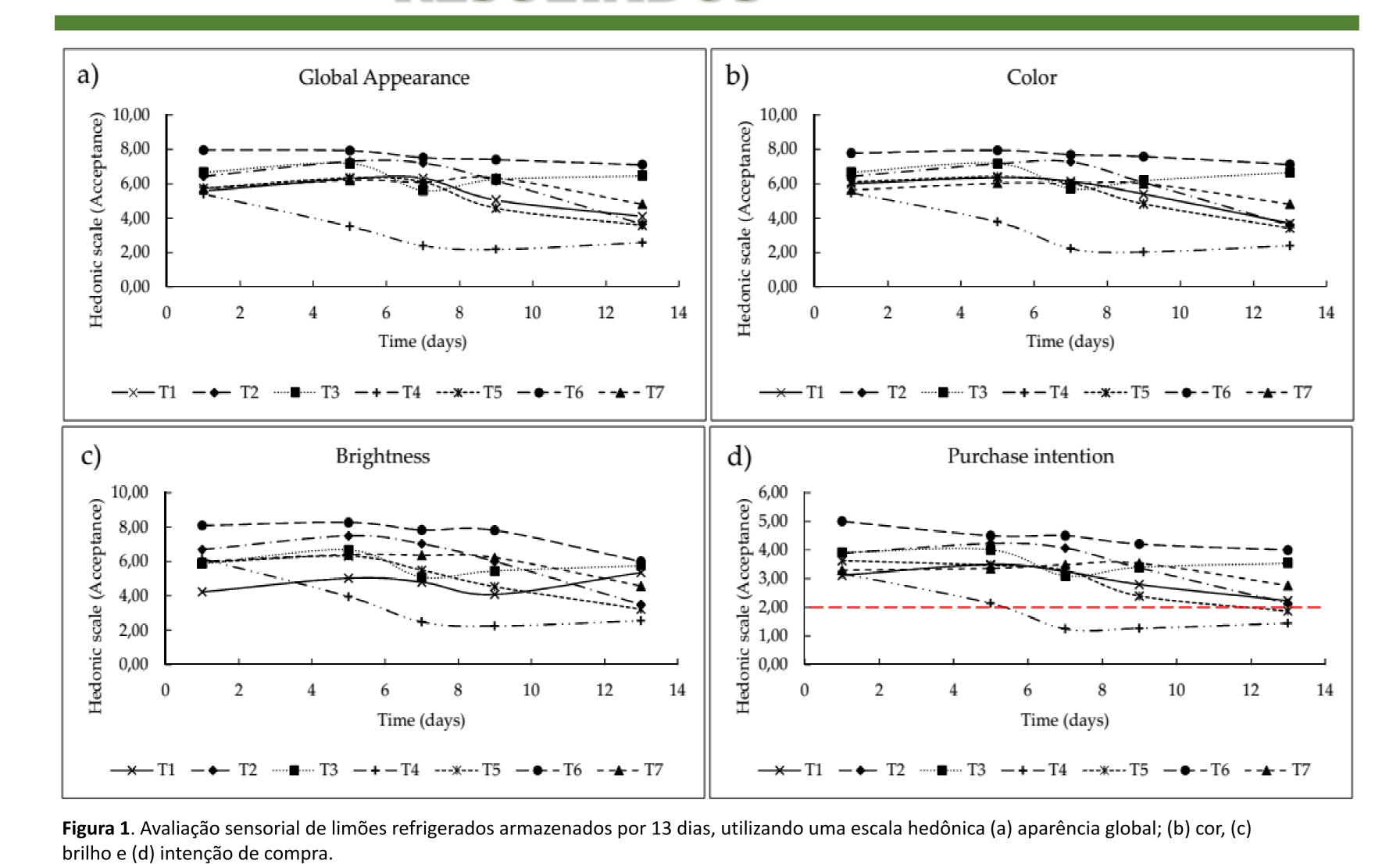


A INTERNACIONALIZAÇÃO DA UNIVERSIDADE E O FORTALECIMENTO DO ENSINO

DESENVOLVIMENTO DE COBERTURAS BIODEGRADÁVEIS COM ADIÇÃO DE NANOCRISTAIS DE CELULOSE E SORBATO APLICADAS EM LIMÕES TAITI (Citrus aurantifolia).

R. Crepaldi, G. Inaba, A. Godoi, M. Santos, F.M. Fakhouri, S.M. Martelli Federal University Grande Dourados, Dourados, MS, Brazil.


INTRODUÇÃO

Os recobrimentos comestíveis podem melhorar o marketing do alimento, com relação à qualidade nutricional, segurança, e aumento no tempo de conservação, pois têm funções como: retardar a perda de umidade, retardar as trocas gasosas, aumentar a integridade estrutural, provendo alguma proteção física contra injúrias, reter componentes voláteis, constituintes do odor e do sabor e atuar como veículo de aditivos alimentícios, como, por exemplo, agentes antimicrobianos e antioxidantes (1). A possibilidade de utilizar nanocristais de celulose (nanowhiskers - CNC) em matrizes poliméricas biodegradáveis desperta um interesse particular devido às notáveis propriedades mecânicas e de barreira alcançadas (2). Este estudo teve como objetivo desenvolver coberturas biodegradáveis à base de gelatina e amido contendo nanocristais de celulose ou sorbato e avaliar sua eficiência na preservação de limões in natura sob refrigeração.

METODOLOGIA

As amostras de limões foram submetidas a sete tratamentos: controle (sem cobertura), cobertura de 75% gelatina mais 25% amido, cobertura de 50% gelatina mais 50% amido, cobertura de 75% gelatina mais 25% amido com sorbato, cobertura de 50% gelatina mais 50% amido com sorbato, cobertura de 75% gelatina mais 25% amido com CNC e cobertura de 50% gelatina mais 50% amido com CNC. As frutas foram lavadas e secas à temperatura ambiente. Os limões frescos não cobertos foram usados como controle. Os ensaios foram imersos durante 1 minuto em soluções formadoras de filmes com diferentes composições. Os frutos foram secos à temperatura ambiente (25 ° C) e armazenados a 5 ° C ± 0,2 ° C durante 13 dias. Foram realizadas análises físicas e químicas durante o amadurecimento dos limões (para todos os tratamentos) de 3 em 3 dias.

RESULTADOS

CONCLUSÃO

Considerando a intenção de compra, nota 2 (provavelmente não comprar) representa o ponto limite de aceitação do consumidor, através deste limite, os frutos controle foram recusados no 13º dia de armazenamento, o tratamento T4, não foi mais aceito a partir do 4º dia de análise, as demais coberturas foram aceitas até o final do experimento, T3, T6 e T7 apresentaram as maiores médias de intenção de compra. Os resultados podem sugerir que alguns revestimentos estudados efetivamente retardem os processos de decomposição e maturação, no caso do revestimento T6 e T3.

REFERÊNCIAS

[1] Cerqueira, T. S., Jacomino, A. P., Sasaki, F. F., & Alleoni, A. C. C. Recobrimentode goiabas com filmes proteicos e de quitosana. Bragantia, 70, 216-221 (2011).

[2] Dufresne, A., Belgacem, M.N. Cellulose-reinforced composites: From micro-to nanoscale. Polímeros: Ciência e Tecnologia Overview (2010).

Parceiros:

CAPES

